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Abstract

Background: Non-alcoholic fatty liver disease, which occurs in people who are not alcohol drinkers, describes
some of the pathogenic conditions that may be in the least characterized by simple steatosis or can be as serious
as non-alcoholic steatohepatitis and cirrhosis. Its mechanistic pathogenesis has been said to arise from insulin
resistance and oxidative stress, which may be compounded by obesity. An experimental model showing, systemic
insulin resistance, obesity and accumulated hepatic fatty acids was created in adult male rats using high-fat diet
manipulation and surgical removal of the left kidney (uninephrectomy). This study sought to identify the impact of
these multiple burdens on the liver mitochondrial membrane permeability transition pore opening, and the
possible in vitro effects of the extracts of Clerodendrum volubile and Manihot esculenta leaves on the membrane
permeabilization.

Results: The results indicated that the methanolic extract of Clerodendrum volubile leaf inhibited mitochondrial
membrane pore opening in the insulin resistance condition or when it is followed by uni-nephrectomy, while the
ethanolic extract of Manihot esculenta leaf does the same in the insulin resistance condition both prior to and
following uni-nephrectomy.

Conclusion: Since the vegetable extracts were able to abrogate mitochondrial pore opening at low concentrations,
the structural integrity of the mitochondria can possibly be restored over time if treated by the vegetable extracts.
Research efforts should, therefore, be made to harness the drugability of the bioactives of these vegetables for use
in the treatment of non-alcoholic fatty liver disease arising from insulin resistance and renal failure.
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Introduction
Multiple burden diseases including diabetes, obesity,
inflammation, and infection are often consequences of
reduced liver functions [1, 2]. It is widely known that a
reduction in liver function is a result of the bidirectional
relationships in the course of the development of these
diseases [2, 3]. Evidence from established studies in both
humans and animal models suggest that an immediate
reduction in liver functions will likely contribute to
metabolism dysfunction, inflammation and oxidative
stress [4] and thus the development of the disease. The
non-alcoholic fatty liver disease has been strongly linked
to metabolic syndrome [5], and together they are asso-
ciated with a state of chronic low-level inflammation
and stress [6]. It encompasses a wide spectrum of patho-
logical conditions, ranging from simple steatosis to non-
alcoholic steatohepatitis and cirrhosis [7]. Non-alcoholic
steatohepatitis is the most prevalent cause of chronic
liver disease in the Western world and has no approved
treatment [8]. Ischemic hepatopathy, a condition of
acute liver injury caused by insufficient blood flow due
to cardiogenic shock (arrising from the leftsided failure
of the heart), or other hemodynamic collapses, may lead
to massive hepatocellular necrosis [9, 10]. The situation
arising from sinusoidal stasis leads to cell death among
other clinical manifestations [11] [12]. Mitochondrial
dysfunction and oxidative stress associated with meta-
bolic syndrome have been proposed as major pathophy-
siological disturbances that contribute to these
pathologies [13, 14].
Mitochondrial dysfunction can cause ATP depletion

and overproduction of reactive oxygen species (ROS),
resulting in protein and lipid oxidation, oxidative
damage to injured tissues, and loss of ATP characterize
typical events of cell death [15]. The mitochondrial
membrane potential dissipates, and the capacity of the
organelle to accumulate Ca2+ becomes abrogated as a
consequence of the inhibition of the respiratory chain.
The molecular manipulation of the mitochondrial path-
ways has been embraced as a convenient way to investi-
gate mitochondrial functional integrity [16]. Although
mitochondria abundance is not a concern for functional
studies, the certainty of protein purity and structural
integrity are important barriers that can encumber mito-
chondrial research [17]. Liver morphological and ultra-
structural integrity may be of concern among kidney
donors who suffer from non-alcoholic fatty liver disease
[18, 19].
The mitochondrial membrane permeability transition

(MMPT) represents a sudden increase of inner mito-
chondrial membrane permeability to solutes with mole-
cular mass up to 1500 Da. The MMPT pore is as a result
of the opening of a voltage- and Ca2+-dependent,
spermine-sensitive, high-conductance protein channel
[15, 20]. In its fully open state, the apparent diameter of
the MMPT pore is about 3 nm. When mitochondrial
swelling is prolonged, the membrane potential dissipates
as a result of equilibration of the proton gradient across
the inner mitochondrial membrane of ions, following
the further massive release of the Ca2+ stored in the
matrix consequent upon the colloidal osmotic pressure
exerted by the elevated concentration of matrix proteins
[21]. However, it is imperative to note that permeability
transition pore opening can induce the outer mitochon-
drial membrane rupture only through the matrix swel-
ling and therefore cytochrome c and the other
apoptogenic molecules do not exit mitochondria
through the permeability transition pore itself [22].
The permeability transition-based model for the outer

mitochondrial membrane permeabilization is supported by
a number of observations, among which are studies with
experimental models showing evidence of the collapse of
membrane potential before caspase activation [23, 24]; the
protective potential of specific inhibitors against pore open-
ing and several other apoptotic responses [25].
Experimentally, mitochondria swelling can be easily

investigated by light scattering measurements [26]. Also,
when mitochondria swell, their refraction index decreases,
thereby decreasing the intensity of scattered light. The
correlation between the amount of light scattered by a
mitochondrial suspension and the volume of the mito-
chondrial matrix was extensively exploited for qualitative
studies of solute transport across the inner membrane.
The mitochondrial swelling, due to the matrix permeation
to external solutes, can be detected as the decrease in the
light scattering of the mitochondrial suspension at 540
nm [21, 22]. Percentage swelling was calculated based on
the optical density decrease between non-treated and 20
μM Ca2+ or 200–1400 μg/ml extract treated mitochondria.
Clerodendrum volubile P. Beauv belongs to the family

Lamiaceae. It is found growing in many deciduous forests
across Africa [23]. It is generally known among the
Urhobo and Itsekiri tribes of the Niger-Delta of Nigeria as
‘Obenetete’, and among the Yorubas in Ondo state as
‘marugbo’ [24, 25]. In Nigeria, notably, the southern area,
among the Ijaws, Urhobos and Itsekiris, the leaf is con-
sumed as a delicacy in foods. In folklore medicine, the
plant is useful for the treatment of several ailments such
as diabetes, rheumatism, arthritis, edema and gout [26,
27]. The reported pharmacological properties of C. volu-
bile leaf includes anti-inflammatory [27], antioxidants [28,
29], antihypertensive [25, 30], antidiabetic [31, 32], neuro-
protective [33], hepatoprotective [34, 35] and cancer che-
mopreventive [36, 37] activities. In a recent study by
Erukainure et al. [38], the antidiabetic effect of acute treat-
ment with the ethyl acetate fraction of C. volubile leaves
was investigated and this property was attributed to the
protocatechuic acid which was observed to be the active
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compound of the plant. The authors further reported that
this fraction suppressed hyperglycemia in type 2 diabetic
rat via synergetic attenuation of phagocytic oxidative burst
as well as molecular interactions with α-glucosidase and
TNF-α [38]. This plant is often termed the magic leaf
owing to its wide use in folklore medicine to treat several
diseases especially diabetes mellitus. Several polyphenolic
compounds (flavonoids and phenolic acids) have been
reported [25, 29, 30, 32] to be present in C. volubile leaves
which has been shown to confer these medicinal and
health benefits of this plant.
Manihot esculenta Crantz, an edible rainforest plant is

a perennial crop native to tropical America with its centre
of origin in North-eastern and Central Brazil [39, 40]. Its
common names include cassava, yuca, tapioca, manioc,
Brazilian arrowroot, dang noi, man sum palung, pearks
sakhoo, huacamote, gbaguda, paki, and ege. The leaves
have also been used against many disorders such as
rheumatism, fever, headache, diarrhea and loss of appetite
[41]. The leaves also possess anti-inflammatory, antipyretic,
anti-diarrhoeal and antihaemorrhoid activities [42]. The
seed oil is found to have antimicrobial activity [43]. The
leaves of the bitter variety of cassava are used to treat
hypertension, headache, and pain [44]. The Cubans com-
monly use cassava to treat irritable bowel syndrome by eat-
ing the paste in excess during treatment [45]. As cassava is
a gluten-free, natural starch, it is embraced in Western
cuisine as a wheat alternative for sufferers of celiac disease
[46]. The leaves have also been shown to have antioxidant
properties and hypoglycemic effect and the ability to close
the mitochondrial membrane permeability transitionn pore
in high-fat diet-manipulated, low-dose STZ-induced dia-
betic male Sprague-Dawley rats [47]. A few researchers
have reported the antioxidant activities of cassava tubers
including Omar et al. [48], who showed that the antioxi-
dant activities of organically grown cassava tubers were
higher than those of mineral-base fertilized roots. They
found that total phenolic and flavonoid contents were sig-
nificantly higher for organic cassava tubers compared to
those grown with inorganic fertilizers. Increased intake of
cassava leaves in diet has also been reported to decrease
the risk of metabolic syndrome in type 2 diabetic patients
[49]. Topical application of the ethanolic extract of Mani-
hot esculenta to wound area on type 1 diabetic rats was
shown to have little effect on collagenation, re-
epithelization and granulation resulting in no significant
effect on wound closure rate compared to Povidone Iodine
[50].
Both plants are used as delicacies and in traditional

medicine and interestingly, certain bioactive compounds
have been identified in these vegetables. The possible
medicinal effects of the plant leaves were studied in our
animal model to see how they would impact MMPT as
they possess known anti-inflammatory, antioxidant,
antihypertensive, antidiabetic, neuroprotective, hepatopro-
tective and cancer chemopreventive activities. Therefore,
owing to the pharmacological potentials of these two
plants (C. volubile and M. esculenta) as used in folklore
medicine in treating several diseases especially diabetes,
we hypothesized that the plants may have the ability to
inhibit liver MMPT pore opening should the liver be
exposed to damage following uni-nephrectomy in the rats,
a response that would be important in diabetes for the
prevention of cell death primarily via the mitochondrial
pathway, and tissue wasting from oxidative stress. We seek
to investigate the effects of uni-nephrectomy on mito-
chondrial membrane permeability transition pore status of
control and insulin-resistant rats and determine if their
liver mitochondria can still take up Ca2+ and retain their
morphological integrity.

Materials and methods
Plant materials and sample preparation
Matured leaves of Clerodendrum volubile P. Beauv were
purchased at the Oja-Oba Market, Akure, Ondo State,
Nigeria purchased, authenticated and assigned the vou-
cher specimen number FUTA/BIO/0121. The leaves of
red stalk Manihot esculenta (Crantz) were collected at
the botanical garden of the National Institute of Pharma-
ceutical Education and Research, Mohali, Punjab, India,
and given the voucher specimen number NIPER-S/
NPTM/0298. The leaves were air-dried and pulverized
and 50 g of each was soaked in 500ml of 95% methanol
and ethanol, respectively for 24 h. The extracts were
concentrated under pressure using a rotavapor. The
resulting crude extracts were used to assess the extent of
mitochondrial membrane permeability transition in the
liver of insulin resistant, uni-nephrectomized male rats
(Figs. 1 and 2).

Chemicals
Mannitol, sucrose, 4-(2-hydroxyethyl)-1-piperazineetha-
nesulfonic acid (HEPES), ethylene glycol-bis(β-ami-
noethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA),
sodium succinate, and other chemicals were products of
Sigma Chemical Co. (St. Louis, MO USA). Except other-
wise stated, all other solvents used were of analytical
grade.

Experimental animals
Twenty-four Sprague-Dawley rats weighing 180–250 g
were used for the experiment. All animals were main-
tained under standard conditions. The control groups
were fed rodent normal pellet diet ad libitum, while test
groups manipulated for T2DM were fed on high-fat diet.
All experimental procedures were approved by the Insti-
tutional Animal Ethics Committee (IAEC 12/11). The
animals were allowed access to water during a fast for
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12 h before sacrifice by decapitation. Experiments were
conducted using 5 animals per group.

Experimental design
The experimental animals were randomly divided into
six groups: (1) a control non-nephrectomized group fed
normal pellet diet; (2) a uni-nephrectomized group fed
normal diet; (3) a non-nephrectomized ‘sham’ group fed
normal pellet diet (surgically opened, but no ligations
and excision of kidneys were performed); (4) a non-
nephrectomized group fed high fat diet; (5) a uni-
nephrectomized group fed high-fat diet; (6) a high-fat-
diet group subsequently uni-nephrectomized at week 9.
High-fat diet – HFD (58% fat, 25% protein and 17% car-
bohydrate, as a percentage of total kcal) was given to
animals in groups 4–6 ad libitum throughout the study
that lasted 18 weeks (except Group 5 animals, which
commenced HFD feeding immediately after uni-
nephrectomy). This serves as a model for obesity and
insulin resistance [51].

The surgical procedure of uni-nephrectomy
The rats underwent uni-nephrectomy of the left kidney in
an aseptic condition, under ketamine (70mg/kg, i. p.)/ xyla-
zine (7mg/kg, i. p.) anesthesia, before injection with saline
(20ml/kg, s.c.) according to the method described by Holte
et al. [52] with slight modifications [53]. Briefly, a 2 cm
flank incision penetrating the abdominal cavity was made
after the area had been cleaned and shaved. Using forceps,
the kidneys were gently pulled out by holding the perirenal
fat and the renal artery, vein, and ureter tied by a non-
absorbable thread. The left kidney was then excised and the
muscular layer sutured with absorbable suture thread, while
the skin layer was closed with non-absorbable thread. The
animals were left in a solitary cage under the heat of 60W
lamp till recovery from anesthesia.

Isolation of rat liver mitochondria
The liver mitochondrial fraction was prepared according
to the method described by Hogeboom et al. [54] and
Johnson and Lardy [55] with slight modifications. Rat
liver was weighed and washed in isolation buffer con-
taining 210 mM mannitol, 70 mM sucrose, and 1 mM
EGTA in 5mM HEPES-KOH, pH 7.4. A 50% suspension
was prepared by homogenizing the liver in a glass-
Teflon homogenizer. The homogenate was centrifuged
at 2300×g for 5 min twice in a SIGMA-6 K15 refriger-
ated centrifuge to sediment the nuclear fraction and cell
debris and to remove unbroken cells by low-speed cen-
trifugation. The supernatant was centrifuged at 13000×g
for 10 min to pellet the mitochondria. The brown mito-
chondria pellet was washed twice by re-suspending in
isolation buffer containing 0.5% BSA and centrifuged at
12000×g for 10 min. Mitochondria were suspended in
buffer containing 210 mM mannitol, 70 mM sucrose, 5
mM HEPES-KOH, pH 7.4 and 0.5 mM KH2PO4 and
dispensed in microcentrifuge tubes kept on ice.

Protein content determination
Protein content was determined using the method of
Lowry et al. [56] using bovine serum albumin as
standard.

Procedure for incubation of mitochondria
One mg/ml liver mitochondrial protein was incubated
with the assay buffer containing 210 mM mannitol, 70
mM sucrose in 5 mM HEPES-KOH, pH 7.4. The incuba-
tion of mitochondria was done with 20 μM rotenone for
3 min (to block the Complex I and limit the source of
electron supply to the electron transport system to Com-
plex II) prior to the addition of 12 mM CaCl2, 30 s after
which the assay was energized by 50mM sodium succi-
nate [57].

Assessment of mitochondrial permeability transition
Mitochondrial swelling as the indicator of MMPT was
spectrophotometrically measured by continuous time scan
of the change in absorbance at 540 nm for 12min [58].
Percentage swelling was calculated based on the optical
density decrease between non-treated and 20 μM Ca2+ or
200–1400 μg/ml extract treated mitochondria.

Transmission electron microscopy (TEM) of mitochondria
For TEM (FEI Tecnai G2 F20, Thermo Scientific™, USA),
mitochondria pellets were recovered from − 80 °C freezer
and dispersed in 20% DMSO containing 1% FAF-BSA.
Mitochondria were fixed in 2.5% glutaraldehyde pre-
pared in sodium phosphate buffer (pH 7.4, 1:1 v/v) and
kept at 4 °C overnight. This was washed with 500 μl
sodium phosphate buffer and spun at 7000×g for 10
min. Stepwise dehydration was achieved using 20%, 40%,
70% and 90% ethanol while spinning at the same speed
each time. Final dehydration was done with 100% etha-
nol at 4 °C over 15 min. The mitochondria pellet was
dispersed in the embedding medium (1:3, 2:2, 3:1 and 4:
0, v/v resin: ethanol) for 15 min, respectively spinning
each time as with the dehydration steps. At absolute
resin embedding, the spur was incubated at 65 °C over-
night to achieve solidification. The block was then
removed for processing by tissue sectioning to 60 nm
using a glass knife on an RMC Boekeler PT-PC Power-
Tome ultramicrotome. The ultra-thin sections were
mounted on Pioloform filmed copper grids prior to
staining with 4% uranyl acetate prepared in 50% metha-
nol. Ultrathin sections were examined using FEI Tecnai
G2 F20 transmission electron microscope at 120 KV,
and digital micrographs were captured by a Gatan CCD
camera.
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Statistical analysis
The results were presented in the form of percentages.
The data were analyzed by ANOVA (SPSS 20) at a sig-
nificance level of p-value less than 0.05 and if significant,
the comparisons between the groups were performed
using Tukey’s post hoc test.

Results and discussion
The degree of Ca2+ uptake (percentage induction of the
pore opening) exhibited by the mitochondria significantly
varied across the groups (Table 1; Additional files 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11 and 12). Methanolic extract of
Clerodendrum volubile leaf induced opening in normal
pellet diet-fed, uni-nephrectomized rats (Additional file 3)
at 200 μg/ml, and in high-fat-diet-fed at 200 μg/ml,
600 μg/ml, and 1000 μg/ml, but showed late-onset open-
ing around 15 s at 1400 μg/ml (Additional file 4). Similarly,
ethanolic extract of Manihot esculenta leaf induced pore
opening in high-fat-diet-fed rats at 200 μg/ml and 600 μg/
ml (Additional file 10) and in uni-nephrectomized, high-
fat-diet-fed only at 1400 μg/ml (Additional file 11). These
observations show that the crude vegetable extracts of
these edible plants are capable of modulating mitochon-
drial pore opening in rat liver.
From the TEM images, the observations in the differ-

ences in the architectural ultrastructure of the double
membranes were compared to that of the mitochondria in
the apparently normal control group. Following similar pre-
paration steps for each sample, same volume of mitochon-
dria pellets were fixed, ultra-thin slices of the same size
were prepared, stained and the images were taken at the
same resolution to make comparison easy. Simple observa-
tion of the TEM images showed the state of both the inner
Table 1 Percentage induction of mitochondrial membrane pore op
extract of Clerodendrum volubile leaf and ethanolic extract of Maniho

%
Induction

NPD-C NPD-UNX HFD-Sham

Cv Me Cv Me Cv Me

NTA 13.98 ±
6.53

13.98 ±
6.53

23.49 ±
8.30

23.49 ±
8.30

26.38 ±
7.30

26.38 ±
7.30

TA a86.02 ±
10.75

a86.02 ±
10.75

a76.51 ±
19.85

a76.51 ±
19.85

a73.62 ±
10.05

a73.62 ±
10.05

200 μg/
ml

b30.19 ±
6.15

b16.36 ±
9.66

b96.64 ±
10.60

b158.24 ±
14.71

b84.64 ±
10.22

b44.34
11.73

600 μg/
ml

b37.38 ±
16.06

b9.10 ±
1.94

b38.43 ±
14.30

b70.31 ±
12.09

b217.93 ±
22.51

b11.87
1.77

1000 μg/
ml

b45.68 ±
16.45

b8.74 ±
2.97

b23.49 ±
9.99

b78.73 ±
16.80

b175.79 ±
22.91

b32.57
16.97

1400 μg/
ml

b37.26 ±
16.13

b53.08 ±
18.96

b14.19 ±
6.15

b143.88 ±
13.63

b47.27 ±
14.42

b17.13
8.06

Cv Clerodendrum volubile P. Beauv, Me Manihot esculenta Crantz (red stalk), NPD-C N
Diet-fed, Uni-nephrectomized, HFD-Sham High Fat Diet-fed, surgically opened, non-
nephrectomized before High Fat Diet-fed, HFD-UNX High Fat Diet-fed before uninep
exogenous calcium, only energized with sodium succinate), TA Triggering agent, po
overload which triggers pore opening). asignificantly different when compared with
across all groups at p< 0.05
and outer mitochondrial membranes. The modulation of
pore opening by the extracts followed a concentration-
dependence, revealing which concentration may be consid-
ered efficient in preserving the mitochondrial against possi-
ble oxidative damage, even if the native state was not
recovered. The TEM images revealed the morphological
changes of the mitochondrial population across the study
groups (Fig. 3). These observations confirmed that high-fat
diet lifestyle and/or uni-nephrectomy predispose to the
development of non-alcoholic fatty liver disease, which
invariably affects the structural integrity and functional
capacity of liver mitochondria (Fig. 3: B-F). Following the
mitochondrial isolation protocol, no whole cells or nuclei
were seen by TEM and the mitochondria were essentially
free of other contaminants. Only a small membranous arti-
fact attributable to microsomes was observed. Across the
treated groups, the isolated mitochondria population dis-
played morphological signs of damage to differing degrees.
The observations from the in vitro study support the
hypothesis that the extracts may be able to reverse damages
caused by the development of non-alcoholic fatty liver dis-
ease in insulin-resistance with or without nephrectomy.
A low-amplitude swelling was observed in the energized

mitochondria by the extracts in the presence of exogenous
CaCl2. The ability of Clerodendrum volubile leaf extract to
abrogate the progression of mitochondrial membrane
depolarization and leakage only in uni-nephrectomized
normal rats at high concentrations, and in insulin-resistant,
uni-nephrectomized rats at all concentrations suggests its
protective role against complications that may arise from
nephrectomy in normal and previously insulin-resistant
conditions before kidney donation or damage. This obser-
vation is similar to the submissions of [59] that insulin
ening in rat liver mitochondria incubated with methanolic
t esculenta leaf, in vitro

HFD UNX-HFD HFD-UNX

Cv Me Cv Me Cv Me

23.59 ±
15.58

23.59 ±
15.58

3.10 ±
0.80

3.10 ±
0.80

50.55 ±
5.87

50.55 ±
5.87

a76.41 ±
15.71

a76.41 ±
15.71

a96.90 ±
14.36

a96.90 ±
14.36

49.45 ±
13.73

49.45 ±
13.73

± b195.23 ±
24.72

b207.58 ±
27.08

b44.34 ±
15.91

b41.82 ±
14.54

b65.56 ±
10.00

b53.00 ±
10.17

± b225.84 ±
24.74

b63.57 ±
9.79

b11.87 ±
7.75

b80.47 ±
10.07

b46.69 ±
9.13

b38.54 ±
7.24

± b221.52 ±
28.46

b75.18 ±
11.45

b32.57 ±
14.05

b67.16 ±
17.82

b142.46 ±
17.47

b185.85 ±
23.59

± b131.38 ±
18.61

b148.04 ±
17.21

b17.13 ±
3.52

b133.85 ±
17.29

b120.22 ±
15.54

b129.78 ±
16.94

ormal Pellet Diet-fed, Control, non-nephrectomized, NPD-UNX Normal Pellet
nephrectomized, HFD High Fat Diet-fed, uni-nephrectomized, UNX-HFD Uni-
hrectomized, NTA No triggering agent, negative control (no treatment with
sitive control (treatment with exogenous calcium to represent calcium
NTA effect across all groups at p < 0.05. bSignificantly different from TA effect



Fig. 1 Clerodendrum volubile. Molehin et al., 2017 [29]. Molehin OR,
Oloyede OI, Boligon AA. Comparative study on the phenolic
content,antioxidant properties and HPLC fingerprinting of the
extracts of Clerodendrum volubile. P. Beauv. J App Pharm Sci.
2017a; 7:135–140
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resistance (IR) predisposes to the development of chronic
kidney disease (CKD) in non-diabetic patients, and those
with mild-to-moderate stage CKD. It is also interesting that
the aqueous extract of C. volubile leaves has earlier been
identified to contain phytochemicals that exert antidiabetic
effects in Wistar rats [32].
Inhibition of the mitochondrial membrane pore opening

by the ethanolic extract of Manihot esculentaleaf was
observed at intermediate concentrations in high-fat-diet-fed
rat liver, at the lower concentrations in uni-nephrectomized,
Fig. 2 Manihot esculenta Crantz. From: Richard Wong Garden &
Woodwork In: Poisonous Yet Nutritious [64]. (http://
rwgardenwoodwork.blogspot.com/2017/07/)
high-fat-diet-fed rats, and at all the extract concentrations in
the high-fat-diet-fed, uni-nephrectomized rats. These find-
ings were consistent with the results of another study which
revealed that the crude ethanolic extract of Manihot escu-
lenta leaf inhibited mitochondrial pore opening in both nor-
mal and type 2 diabetic Sprague-Dawley rats, both in vivo
and in vitro, which may be due to the significant antioxidant
properties of the extract [47, 60]. These observations suggest
that the protective role of Manihot esculenta leaf extract can
be harnessed both when insulin-resistance develops follow-
ing kidney donation or damage, and when there has been
insulin resistance before nephrectomy.
As depicted from the TEM results (Fig. 3), it can be

observed that high-fat diet resulted in the shrinking of
mitochondria while nephrectomy resulted in the swelling
of mitochondria. The latter event, which is characteristic
of fatty liver, would ultimately lead to mitochondrial pore
opening that will lead to the escape of calcium into the
cytosol, marking the progression of cell suicide via the
mitochondrial pathway. Previous research findings have
established increased lipid peroxidation and decreased
active biliary transport in hepatocytes following
nephrectomy. This is usually a result of uremic toxins
affecting liver cells, probably by competing at the hepato-
cellular level, with the endogenous substances, which are
normally excreted in urine [61] Damage to the liver, a
remote organ, has also been reported following renal fail-
ure, especially when insulin resistance is present [62].
Indeed, according to Filozof et al. [8], accumulation of fat
in the liver exerts several cellular and metabolic effects
that can, in the long run, culminate in steatohepatitis and
fibrosis. These include a high preponderance of apoptotic
cell death in hepatocytes, mitochondrial dysfunction char-
acterized by the increased generation of reactive oxygen
species, accompanied by lipid peroxidation of membranes
structures as well as a cascade of activation of pro-
inflammatory genes, which will further exacerbate the
induction of several other inflammatory mediators
involved in the development of liver fibrosis.
Conclusions
We showed uni-nephrectomy mimicked the situation of
kidney donation, especially in the presence of insulin
resistance developed by a life style of high fat diet. We
also endeavored to see if there is/are any possible attend-
ing effects on the liver mitochondria architecture, by the
two extracts on the mitochondrial membrane, in vitro by
the simple swelling assay and ex vivo using TEM. As the
vegetable extracts were able to abrogate mitochondrial
pore opening at low concentrations, the structural integ-
rity of the mitochondria can possibly be restored over
time if treated by the vegetable extracts. This can be a
good recommendation for insulin-resistant, living kidney

http://rwgardenwoodwork.blogspot.com/2017/07/
http://rwgardenwoodwork.blogspot.com/2017/07/


Fig. 3 TEM images of ultra-thin sections showing the morphological architecture of insulin resistant. uni- nephrectomized male rat liver
mitochondria. a NPD-C: Normal Pellet Diet-fed,Control, non-nephrectomized; b NPD-UNX: Normal Pellet Diet-fed, Uni-nephrectomized; c HFD-
Sham: High Fat Diet-fed, surgically opened, non-nephrectomized; d HFD: High Fat Dietfed,uni-nephrectomized; e UNX-HFD: Uni-nephrectomized
before High Fat Diet-fed; f HFDUNX:High Fat Diet-fed before uni-nephrectomized. The TEM images are also shown in the samesection size
(0.2 μm) and magnification (× 5000) using high resolution transmission electron microscope (HRTEM, 120 kV)
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donors, who may be predisposed to non-alcoholic fatty
liver disease following nephrectomy. Thus, the knowledge
about the ability of these vegetable extracts to modulate
mitochondrial pore opening which precedes the occur-
rence of cell death can be applied for useful drug develop-
ment for the management of the complications of insulin-
resistance, especially when kidney disease is co-morbidity
as typified by nephrectomy [63].
Limitations
This study was carried out in vitro. The observations
may not be extended to explain what might happen
in vivo as the administration of the plant extract by oral
gavage may show a different response in the animals.
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